
肖剑,男,讲师、硕士生导师, 2024年6月于电子科技大学获得信息与通信工程专业博士学位。2024年7月起在香港六合彩最准官方网-香港六合彩资料大全
从教至今,主要从事多智能体集群协同控制与规划方向研究。参加四川省自然科学基金面上项目2项、浙江省自然科学基金面上项目1项、中电科横向项目2项。近5年发表学术论文15篇(SCI论文13篇,EI论文2篇),谷歌学术总被引280余次。其中,以第一作者身份在中科院一、二区TOP期刊上发表SCI论文5篇。参与申请国家发明专利6项并授权4项。担任《ISA Transactions》、《Neurocomputing》、《IEEE Transactions on Machine Learning in Communications and Networking》、《Journal of Computational Design and Engineering》等国际期刊的审稿人。
一、主讲课程:
无
二、研究方向:
多智能体协同控制,多智能路径规划、强化学习、行为预测
二、代表性论成果:
近期发表论文:
[1] Xiao J, Huang C, Yuan G, et al. A model learning based multi-agent flocking collaborative control method for stochastic communication environment. IEEE Transactions on Industrial Informatics, 2024, 20(6): 8896-8906.(中科院一区, TOP期刊,IF: 12.3)
[2] Xiao J, Wang Z, He J, et al. A graph neural network based deep reinforcement learning algorithm for multi-agent leader-follower flocking. Information Sciences, 2023, 641: 119074. (中科院一区,TOP期刊,IF: 8.1)
[3] Xiao J, Yuan G, He J, et al. Graph attention mechanism based reinforcement learning for multi-agent flocking control in communication-restricted environment. Information Sciences, 2023, 620: 142-157. (中科院一区,TOP期刊,IF: 8.1)
[4] Xiao J, Yuan G, Wang Z. A multi-agent flocking collaborative control method for stochastic dynamic environment via graph attention autoencoder based reinforcement learning. Neurocomputing, 2023, 549: 126379.(中科院二区,TOP期刊, IF: 6.0)
[5] Xiao J, Yuan G, Xue Y, et al. A deep reinforcement learning based distributed multi-UAV dynamic area coverage algorithm for complex environment[J]. Neurocomputing, 2024, 595: 127904.(中科院二区,TOP期刊, IF: 6.0)
[6] Xiao J, Wang Z, Wang Y, et al. An agent motion model construction method based on sequential attention neural network //2023 3rd International Conference on Artificial Intelligence, Automation and Algorithms. 2023: 36-43. (EI检索)
[7] Yuan G, Xiao J, He J, et al. Multi-agent cooperative area coverage: a two-stage planning approach based on reinforcement learning. Information Sciences, 2024.(中科院一区,TOP期刊,IF:8.1)
[8] Wang G, Xiao J, R Xue, et al. A multi-group multi-agent system based on reinforcement learning and flocking. International Journal of Control, Automation and Systems, 2022, 20(7): 2364-2378.(中科院三区,IF:3.2)
[9] Li B, Zhang H, Xiao J*, et al. Energy-efficient multi-agent cooperative search control based on deep reinforcement learning on uneven terrains//2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC). IEEE, 2022, 6: 1384-1388.(EI检索,通讯作者)
[10] Tang Y, Hu W, Xiao J, et al. Reinforcement learning based efficiency optimization scheme for the DAB DC-DC converter with triple-phase-shift modulation, IEEE Transactions on Industrial Electronics, 2020, 8(68): 7350-7361.(中科院一区,TOP期刊,IF:7.7)
[11] Tang Y, Cao D, Xiao J, et al. AI-aided power electronic converters automatic online real-time efficiency optimization method. Fundamental Research, 2023. (IF:6.2)
[12] Zhao H, Yuan G, Xiao J, et al. Linearization of nonlinear frequency modulated continuous wave generation using model-based reinforcement learning. Optics Express, 2022, 30(12): 20647-20658. (中科院二区, TOP期刊,IF: 3.8)
[13] Tang Y, Hu W, Xiao J, et al. RL-ANN based minimum-current-stress scheme for the dual active bridge converter with triple-phase-shift control, IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021, 10(1): 673-689.(中科院一区,TOP期刊,IF:5.9)
近期授权发明专利:
[1] 袁国慧,王卓然,肖剑等. 一种基于Deep Q-Learning的集群区域覆盖方法[P]. 浙江省:CN114326749B,2023-10-13.
[2] 张瑛, 黄治宇,薛玉玺, 肖剑等,一种基于增强学习的多智能体集群避障方法[P]. 四川省:CN113156954B, 2023-03-24.
[3] 袁国慧, 王卓然, 何劲辉, 肖剑等. 一种基于深度强化学习的多智能体避障导航控制方法[P]. 四川省:CN117193320B, 2024-12-17.
四、承担科研项目情况:
[1] 四川省自然科学基金面上项目,2022NSFSC0460 ,“复杂环境下基于强化学习的多智能体集群控制方法研究”,2022/01-2023/12, [参与]
[2] 四川省自然科学基金面上项目,2023NSFSC0492,“面向调频连续波激光测距系统的数据驱动控制方法研究”,2023/01-2024/12, [参与]
五、联系方式:
通讯地址:香港六合彩最准官方网
老办公楼422 邮编:411105
邮箱:[email protected]、[email protected]